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The following theorem is not proven in Hartshorne.

Theorem 0.1. Let X be a scheme over a ring A.

(1) If φ : X → PnA is an A-morphism, then φ∗(O(1)) is an invertible sheaf onX , which is generated

by the global sections φ∗(xi), i = 0, . . . , n.

(2) Let L be an invertible sheaf on X which is generated by nonzero global sections s0, . . . , sn.

There exists a unique A-morphism φ : X → PnA for which there exists an isomorphism α : L →
φ∗(O(1)) with α(si) = φ∗(xi), and there is only one such α for this φ.

It is convincingly handwaved, but the tools necessary to address it are not developed in the

text (for example, what is φ∗(x)? The “obvious” definition turns out not to be a definition at

all, since pullback requires passing through two sheafifications). In this exposition, we present

a complete proof.

The following results are, for the sake of brevity, largely stated in terms of global sections,

but can be modified in obvious ways to deal with sections defined on open subsets.

1. Invertible ring elements and Nonvanishing Sections

De�nition 1.1. Let X be a locally ringed space and F be an OX -module. For open U ⊆ X

and x ∈ U , we say that s ∈ Γ(U,F) vanishes at x if sx ∈ mxFx. We say that s vanishes if there

exists some x ∈ U at which s vanishes, and that s is nonvanishing if there is no x ∈ U at which

s vanishes.

Lemma 1.2. Let X be a ringed space and U be an open subset. Then f ∈ OX(X) is invertible if and

only if each fx for x ∈ X is invertible.

Proof. The forward direction is obvious. Suppose fx is invertible for each x. Let σ : OX → OX
be the OX -module map given by multiplication by f . Then on each stalk, σx is an isomorphism,

so σ is an isomorphism, and in particular some σX(g) = 1, i.e., f has an inverse. �

Corollary 1.3. If X is locally ringed, then f ∈ OX(X) is invertible if and only if f is nonvanishing.
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2. Pullbacks

Throughout this section, letX
φ−→ Y be a morphism of ringed spaces. Let F be anOY -module

and v be a global section of F .

Remark 2.1. Passing to a stalk is functorial on the category of OX -modules. By virtue of being

a colimit, it commutes with tensor products, commutes with sheafification, and commutes with

other colimits.

Lemma 2.2. We have (φ∗F)x = Fφ(x) for each x ∈ X . Further, if ζ : F → G is a morphism of

OY -modules, then (φ∗ζ)x = ζφ(x).

Proof. The definition together with several applications of remark 2.1. �

The second statement in the next lemma is to be interpreted as saying that the constant

function 1 pulls back to the constant function 1. This will allow us to manipulate pullbacks of

sections of OY -modules in terms of their relationship with the structure sheaf OY .

Lemma 2.3. There is a canonical isomorphism OX → φ∗OY . Further, on a stalk at a point x ∈ X ,
this isomorphism takes 1 7→ 1⊗ 1.

Proof. For any OX -module Q, we have natural isomorphisms

HomOX -mod(OX , Q) ∼= Γ(X,Q) = Γ(Y, φ∗Q) ∼= HomOY -mod(OY , φ∗Q) ∼= HomOX -mod(φ
∗OY , Q)

The Yoneda lemma then tells us that the desired isomorphism exists and is found by setting

Q = φ∗OY , taking idφ∗OY ∈ HomOX -mod(φ
∗OY , φ∗OY ), and following it back along the chain

of isomorphisms. In HomOY -mod(OY , φ∗φ∗OY ), on an open set U ⊆ Y , we obtain a morphism

induced by the following steps.

(1) Let τ1 : OY (U)→ φ−1OY (φ−1(U)) be the map of abelian groups induced by taking the

relevant map into the direct limit (itself induced by restriction maps), then taking the

map induced by sheafifying.

(2) Let τ2 : φ−1OY (φ−1(U)) → φ−1OY (φ−1(U)) ⊗φ−1OY (φ−1(U)) OX(φ−1(U)) be induced by

taking maps of the form x 7→ x⊗ 1, then sheafifying.

By lemma 2.2 for any x ∈ U we have that (τ2)x sends x 7→ x⊗1. Since taking colimits commutes,

(τ1)x is the identity. Thus (τ2τ1)x is the map x 7→ x⊗ 1. The image of 1 ∈ Γ(X,OX) under τ2τ1
therefore has germ 1 ⊗ 1 at each point of Y . The morphism OX → φ∗OY in the leftmost term

of our sequence thus takes 1 to a section which (again by Lemma 2.2) has germ 1 ⊗ 1 at each

point. �
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De�nition 2.4. We define the pullback of v under φ, denoted φ∗(v), as follows. There is a

unique morphism s : OY → F taking 1 7→ v, so since φ∗ is functorial, we obtain a map

φ∗s : φ∗OY → φ∗F . Since φ∗OY is canonically isomorphic to OX , we obtain a canonical map

s′ : OX
∼−→ φ∗OY

φ∗s−−→ φ∗F . Let φ∗(v) := s′(1).

Proposition 2.5. For any x ∈ X , we have φ∗(v)x = vφ(x) ⊗ 1 ∈ Fφ(x) ⊗OY,φ(x) OX,x.

Proof. We have that φ∗(v)x is the evaluation at 1 of the map OX,x
∼−→ (φ∗OY )x

φ∗(s)x−−−→ (φ∗F)x.

We know that the first map takes 1 7→ 1 ⊗ 1 and the second map takes 1 ⊗ 1 7→ vφ(x) ⊗ 1, as

desired. �

Corollary 2.6. Suppose that additionally, X and Y are locally ringed spaces and that φ is a morphism

of locally ringed spaces. Then we have that φ∗(v) vanishes at x ∈ X if v vanishes at φ(x).

Proof. Suppose that v vanishes at φ(x), say vx = mv′ for some m ∈ mφ(x) and v′ ∈ OY,φ(x). Then
φ∗(v)x = vx ⊗ 1 = φ#

x (m)(v′ ⊗ 1). Since φ#
x is a local ring map, we have that φ∗(v) vanishes at

x. �

The following result tells us that we can calculate a map of a section and then pull back,

and this will be the same as (but presumably easier than) pulling back a section and then

understanding the pulled back map.

Proposition 2.7. Let ζ : F → G be a morphism of OY modules. Then ζ∗(φ∗(v)) = φ∗(ζ(v)).

Proof. These sections have the same stalks. �

The next result tells us that pulling back sections of the structure sheaf as a module is exactly

the same as pulling them back as functions. We then proceed to turn this result into a definition.

Lemma 2.8. Let τ : OX → φ∗OY be the canonical isomorphism. Let f ∈ Γ(Y,OY ). Then

τ−1(φ∗(f)) = φ#(f).

Proof. For each x ∈ X, we have τ−1x (φ∗(f)x) = τ−1x (fφ(x)⊗1) = τ−1x (1⊗φ#(f)x) = φ#(f)xτ
−1(1⊗

1) = φ#(f)x. �

De�nition 2.9. Henceforth we identify φ∗OY with OX along the canonical isomorphism. By

Lemma 2.8, for each section f ∈ Γ(Y,OX), we then have φ∗(f) = φ#(f).

Proposition 2.10. If F is generated by global sections {(xi)i}, then φ∗F is generated by the global

sections {(φ∗(xi))i}.

Proof. Let O⊕r1Y → O⊕r1Y → F → 0 be a presentation of F . Since φ∗ is a left adjoint, φ∗ is right

exact, so we obtain a presentation O⊕r1X → O⊕r1X → φ∗F → 0, from which the result is clear. �



4 SARAH GRIFFITH

Corollary 2.11. If F is quasicoherent, then φ∗F has the same property.

Proof. The proof is the same. �

It is not true that the pullback of a coherent sheaf must be coherent - this requires a locally

Noetherian hypothesis. However, in the locally free case this does hold.

Proposition 2.12. If F is locally free of constant rank, then φ∗F is locally free of the same rank.

Proof. Let U ⊆ Y be an open subset on which there is an isomorphism ψ : OY |⊕rU → F . This
pulls back to an isomorphism ψ∗ : OX |⊕rφ−1(U) → φ∗F|φ−1(U). �

Proposition 2.13. φ∗ is an OY (Y )-module homomorphism from Γ(Y,F) to Γ(X,φ∗F).

Proof. In other words, we must check that for each v, w ∈ Γ(Y,F) and f ∈ Γ(Y,OY ), we have

φ∗(v + fw) = φ∗(v) + φ∗(f)φ∗(w), and indeed they have the same stalks. �

In particular, for schemes over a field, the above result shows that pullback yields compatible

vector space transformations for each open set of Y .

3. Trivializations

Throughout this section, let Y be a locally ringed space and L be an invertible sheaf on Y .

De�nition 3.1. A trivialization of an OY -module F is an isomorphism (in either direction) with

O⊕rY , for any r. A local trivialization is a trivialization of the restrictions of F and O⊕rY to some

open subset.

A local trivialization of an invertible sheaf should be thought of as a local coordinate ex-

pression for the sections of that sheaf, which are thereby turned into functions (in fact, a local

trivialization of any locally free sheaf can be thought of as turning sections into tuples of func-

tions). Given a nonvanishing section s, we can use s to define local coordinate expressions for

all the other sections by choosing to have s correspond to the constant function 1. We now

make this notion rigorous.

Lemma 3.2. Let s ∈ Γ(U,L ) be nonvanishing. Then taking the constant section 1 to s de�nes a local

trivialization of L on U .

Proof. We may as well assume U = Y . Let ϕ : OY → L be a morphism of OY -modules defined

by 1 7→ s. For any x ∈ Y , let ψ : L |U
∼−→ OY |U be a trivialization on some neighborhood U of
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Y . Then 1 7→ ψ(sx) defines the unique map τ making the following diagram commute

OY,x Lx

OY,x

ϕx

τ
ψx

If ψx(sx) ∈ mx, then sx = ψ−1(ψ(sx)) = ψ(sx)ψ
−1(1) ∈ mxLx, a contradiction. Thus ψ(sx) is a

unit, so τ is an isomorphism, whence ψ−1x τ = ϕx is an isomorphism. Since ϕ is an isomorphism

on stalks, ϕ is an isomorphism. �

Lemma 3.3. Let α : L → OY be a trivialization. Let N be the set of nonvanishing global sections of

L and K be the set of invertible global sections of OY . Then α|N yields a bijection between N and K .

Proof. We will show α|N : N → K and α−1|K : K → N are well defined. In this case we will

already know they are inverses.

Suppose s ∈ Γ(Y,L ) is a nonvanishing global section and α(s) is not invertible. By Corol-

lary 1.3, it must be that α(s) vanishes at some point x, say α(s)x = m ∈ mx. Then s = mα−1x (1),

so s vanishes, a contradiction.

Conversely, if s vanishes at x, say with sx = ms′, then α(s)x = αx(ms
′) = mαx(s

′), so α(s)

vanishes and is not invertible. �

Corollary 3.4. There is a canonical bijection between local trivializations on some open U ⊆ Y of an

invertible sheaf, and that sheaf’s nonvanishing sections on U .

The following shows that a converse to Corollary 2.6 holds in a useful class of cases.

Corollary 3.5. Let φ : X → Y be a morphism of locally ringed spaces, and v ∈ Γ(Y,L ). Then if

φ∗(v) vanishes at some x ∈ X , we have that v vanishes at φ(x). In particular, if v is nonvanishing,

then so is φ∗(v).

Proof. Suppose that φ∗(v) vanishes at x. Then vφ(x)⊗1 = m
∑

i(ai⊗ bi) for some ai ∈ Lφ(x), bi ∈
OX,x,m ∈ mx. Rearranging and using the fact that φ#

x is a local homomorphism, we find that

for some m′ ∈ mφ(x), a ∈ Lφ(x), we have 0 = (vφ(x) −m′a)⊗ 1. Let ψ : L |U → OY |U be a local

trivialization on some neighborhood of φ(x). Then 0 = (ψφ(x)(vφ(x)) −m′ψφ(x)(a)) ⊗ 1, which

means that ψφ(x)(vφ(x)) − m′ψφ(x)(a) ∈ kerφ#
φ(x). But OY,φ(x) is local, so kerφ#

φ(x) ⊆ mφ(x). We

must therefore have that ψφ(x)(vφ(x)) ∈ mφ(x), say ψφ(x)(vφ(x)) = m′v′, so applying ψ−1φ(x), we see

that v vanishes at φ(x).

The second assertion is immediate from the first. �

De�nition 3.6. Let s1, s2 ∈ Γ(X,L ), with s2 nonzero. Let ψ : L |Xs2 → OX |Xs2 be the local

trivialization defined by s2. We define s1/s2 ∈ Γ(Xs2 ,OX) to be ψ(s1).
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Theorem 3.7. Let s1, s2 ∈ Γ(X,L ). IfXs2 6= ∅, then after restricting toXs2 we have (s1/s2)s2 = s1.

If Xs1 ∩Xs2 6= ∅, after restricting to Xs1 ∩Xs2 we have (s1/s2) = (s2/s1)
−1.

Proof. To obtain the first equality, apply the trivialization taking s2 to 1 to both sides. This is

an isomorphism, the left hand side is now s1/s2 and by definition the right hand side is now

s1/s2, so we must have had (s1/s2)s2 = s1. For the second equality, since (s1/s2)s2 = s1 and

(s2/s1)s1 = s2, substituting, we obtain (s1/s2)s2 = (s2/s1)
−1s2, so applying the trivialization

taking s2 to 1 yields the result. �

4. Defining maps into projective space

We now have all the tools we need to prove our main theorem.

Theorem 4.1. Let X be a scheme over a ring A.

(1) If φ : X → PnA is an A-morphism, then φ∗(O(1)) is an invertible sheaf onX , which is generated

by the global sections φ∗(xi), i = 0, . . . , n.

(2) Let L be an invertible sheaf on X which is generated by nonzero global sections s0, . . . , sn.

There exists a unique A-morphism φ : X → PnA for which there exists an isomorphism α : L →
φ∗(O(1)) with α(si) = φ∗(xi), and there is only one such α for this φ.

Proof. Proposition 2.10 and Proposition 2.12 immediately yield the first part. We now prove the

second part, beginning by constructing φ from our sections.

The open sets Xsi cover X . By Lemma 3.2, each Li := Xsi is equipped with a trivializa-

tion ψi : Li|Xsi → OXsi . Let Ui denote D+(xi) ⊂ PnA. Let φi be the composition Xsi

ζi−→
SpecA[x0/xi, . . . , xn/xi]

ιi
↪→ PnA, with ζi induced by the homomorphism A[x0/xi, . . . , xn/xi] →

OXsi sending xj/xi to sj/si.
We want to show that φr|Xsr∩Xst = φt|Xsr∩Xst for each r, t. The image of each of these

restrictions is contained in Ur ∩ Ut. Let

τrt : SpecA[x0/xr, . . . , xn/xr, (xt/xr)
−1]→ SpecA[x0/xt, . . . , xn/xt, (xr/xt)

−1]

be the composition of the isomorphisms ι−1r (Ur ∩ Ut) → Ur ∩ Ut → ι−1t (Ur ∩ Ut). Then τrt is
given by the identity. Thus we need to check that the ζi agree when extended to the same ring

by localization, but this is the content of Theorem 3.7. This constructs φ, so we now need to

check that α exists.

By Proposition 2.12, we have that OX(1) is generated by the φ∗(xi). Since OX(1) is a pullback

of an invertible sheaf, by Proposition 2.12 we have that OX(1) is invertible. Since Xsi maps

into Ui, we have that φ∗(xi) is nonvanishing, so defines a trivialization of OX(1)|Xsi . Letting
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αi : L |Xsi → OX(1)|Xsi be the composition of the maps taking si to 1 and 1 to φ∗(xi), we see

that αi is an isomorphism from the fact that it is a composition of trivializations.

We now wish to show that the αi are compatible, yielding the desired isomorphism α : L →
OX(1). Pick any si, sj . We assume all sections and morphisms are restricted to Xsi ∩Xsj . It is

su�cient to show that αi(si) = αj(si), or φ∗(xi) = (si/sj)φ
∗(xj). On Uj we have an isomorphism

O(1)|Ui → OPnA|Ui given by dividing by xj . Applying the pullback of this isomorphism to

both sides, the desired equation becomes φ∗(xi/xj) = si/sj . Since the left hand side is now

the pullback of a section of the structure sheaf, this is φ#(xi/xj) = si/sj , which holds by

definition. This constructs α. Further, it is easy to see from this construction that α was uniquely

determined by the requirement si 7→ φ∗(xi).

Finally, suppose we have a map φ : X → PnA and an isomorphism α : L → OX(1), for

which α(si) = φ∗(xi) for each i. We want to show that restricting φ to φ : Xsi → Ui, we

have φ#(xj/xi) = sj/si, or φ#(xj) = (sj/si)φ
#(xi), which will specify the ring maps uniquely

determining φ. Apply α to sj = (sj/si)si to see that φ∗(xj) = (sj/si)φ
∗(xi). The same trick of

pulling back the division map shows us that φ#(xj/xi) = sj/si, as desired. �


