
Module of Di�erentials Notes

Sarah Gri�th

These notes draw from a variety of sources, including Hartshorne, Liu, a bit of Vakil and

the Stacks project, and especially Eisenbud’s Commutative Algebra With a View Toward Algebraic

Geometry. The objective is to mishmash interesting elements from each of these into something

light, explanatory, and extremely geometric, with opportunities for analogies with the theory of

manifolds always being taken.

All rings are commutative and with identity.

1 De�nition of the Module of Di�erentials

De�nition 1.1. Let ι : R → S be a ring map, and M be an S-module. An R-derivation

ϕ : S → M is an R-linear map with im ι ⊆ kerϕ, and which satisfies the Leibniz rule ϕ(gh) =

gϕ(h) + ϕ(g)h. We let DerR(S,M) be the S-module of R-derivations to M .

Example 1.2. In the above notation, let R by any ring, let S = M = R[x, y], and let ϕ : R[x, y]→
R[x, y] be the partial derivative map f(x) 7→ ∂f/∂x. This is an R-derivation. Notice that the

elements of R serve the role of constant functions. It is also an R[y]-derivation.

Example 1.3. LetM be a manifold (by which I will always mean a smooth, real, finite dimensional

manifold). Then M is equipped with a structure sheaf of R-algebras OM taking an open subset

U to C∞(U). A tangent vector at a point inM is a choice of direction and magnitude. However,

given the many possible charts on M , it is not a priori clear that this is well defined. Worse,

suppose we wish to define smooth vector fields on M : how can we encode the concept of

smoothly choosing directions and magnitude at each point?

One way around this di�culty is to claim that the information of a vector v sticking out of

a point p is the same as the information of how taking partial derivatives in the direction of v

changes the value of functions at p. That is, fixing local coordinates on a chart U , we find that

v is the same information as the map σp,v : OM(U)→ R which takes f to the partial derivative

of f in the direction v, then evaluates at the point p. Taking di�erent local coordinates, the
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derivative of the transition map between these coordinates yields another vector, which will

turn out to yield exactly the same σp,v if we repeat the procedure in our new coordinates. We

can therefore define tangent vectors to be such σp,v. The result is a coordinate free encoding

of the tangent vectors at p, which can be shown to agree with the explicit, coordinate based

definitions.

This also allows us to encode a vector fieldX on U as anR-derivationX : OM(U)→ OM(U).

To do this, we let X(f) be the function so that if the vector associated with X at the point p is

v, then X(f)(p) = σp,v(f).

We can therefore associate another sheaf withM , the sheaf of derivations, which takes each

U to the R-module of derivations X : OM(U)→ OM(U). This sheaf turns out to be locally free

of rank dimM , hence corresponds to a vector bundle, which is exactly the tangent bundle.

We now turn to some algebra. There is a universal object for R-derivations from S. We can

describe it as follows.

De�nition 1.4. Let R → S be a map of rings. Let OS/R, the category of R-derivations, be the

category with objects (M,dM), where M is an S-module and dM : S → M is an R-derivation

(this category is not usually given a name or a symbol). The morphisms (M,dM) → (W,dW )

of OS/R are S-linear maps f : M → W so that the following triangle commutes

S

M W

dM dW

f

(1)

Let (ΩS/R,d), the module of relative di�erential forms of S over R, be the initial object of OS/R.

We also call this the module of di�erentials or Kähler di�erentials of S over R. This is also

called the Kähler module of S over R.

Less precisely, all R-derivations from S factor uniquely through ΩS/R. An equivalent formu-

lation is that ΩS/R represents the functor DerR(S,−) : S-Mod→ Set.

It may help to think of ΩS/R as having the same relationship with derivations that the tensor

product has with multilinear maps, or the wedge product has with alternating maps, etc. We

show that ΩS/R actually exists by constructing it: take a free module on the symbols {dg : g ∈ S}
and then quotient down by the minimal relations necessary to induce the universal property.

As a consequence d : S → ΩS/R is surjective: everything in ΩS/R is a linear combination over

S of symbols of the form dg with g ∈ S.

Remark 1.5. Based on example 1.3, we should expect the tangent bundle to be encoded by

some sheaf analogue of the module DerR(S, S). We now wish to understand how to encode a
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cotangent bundle. In the manifold case, given a smooth function f : M → R, the derivative Df
is a smooth map from the tangent bundle to R which is linear on the tangent space at each point.

In other words, Df is a section of the cotangent bundle. Let T ∗ denote the sheaf of sections

of the contangent bundle. Since D(fg) = fDg + D(f)g, we can regard D as a morphism of

sheaves D : OM ⇒ T ∗ which is given by an R-derivation D : OM(U) → T ∗(U) for each open

set U . We thus obtain a unique map D̃ : ΩOM (U)/R → T ∗(U) so that D = D̃ ◦ d.
The cotangent bundle has sections which are locally of the form (for example) fDg + qDh,

while ΩOM (U)/R has sections which are locally of the form (for example) fdg + qdh. We might

conjecture that D̃ is an isomorphism. This conjecture is nearly correct, but the module of

di�erentials only encodes relations between finite sums, so that, for example, letting M = U =

R, we do not have det = etdt. Thus we can only get a ‘purely algebraic’ version of the cotangent

bundle from examining the modules ΩOM (U)/R. Since schemes are algebraic to start with this

will not be an issue, so we will use modules of the form ΩS/R to define the cotangent bundle.

2 Recipes

If this diagram of rings commutes

R R′

S S ′m

(2)

then by the universal property applied to the R-derivation S → S ′ → ΩS′/R′ , we obtain the

arrow making this diagram of S-modules commute:

S S ′

ΩS/R ΩS′/R′

d d

∃!τ

(3)

Explicitly, the lower arrow is given by τ(fdg) = m(f)d(m(g)). While this formula for τ doesn’t

mention R or R′ at all, it requires the existence of a map R → R′ to be well defined, and the

internal structures of ΩS/R and ΩS′/R′ depend on R → S and R′ → S ′. The following result

relates τ to the aforementioned maps.

Lemma 2.1. (Handy lemma) In the above notation, if the map S → S ′ is surjective, then the kernel

of the induced map τ is generated by those da for which m(a) lands in the image of R′.
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Proof. Suppose τ(da) = 0. Then dm(a) = 0 in ΩR′/S′ , so in ⊕w∈S′S ′dw we can write dm(a) as a

linear combination of the derivation relations. That is, there must be r′i ∈ R′ and s′i, t′i, x′i, y′i, c′j,i ∈
S ′ so that we have a relation of formal symbols

dm(a) =
∑
i

c′1,idr
′
i +
∑
i

c′2,i(d(s′i + t′i)− d(s′i)− d(t′i)) +
∑
i

c′3,i(d(x′iy
′
i)− x′idy′i − y′idx′i)

Since m is surjective, choosing preimages si, ti, xi, yi, cj,i ∈ S, we may write this as

dm(a) =
∑
i

m(c1,i)dm(ri) +
∑
i

m(c2,i)(d(m(si + ti))− d(m(si))− d(m(ti)))+∑
i

m(c3,i)(d(m(xiyi))−m(xi)dm(yi)−m(yi)dm(xi))

Now consider the map ϕ : ⊕q∈SSdq → ⊕w∈S′S ′dw defined by cdq 7→ m(c)dm(q). We have

ϕ(da) = ϕ

(∑
i

c1,idri +
∑
i

c2,i(d(si + ti)− d(si)− d(ti)) +
∑
i

c3,i(d(xiyi)− xidyi − yidxi)

)

It follows that for some
∑

i `idzi ∈ kerϕ, we have

da =
∑
i

c1,idri +
∑
i

c2,i(d(si + ti)− d(si)− d(ti)) +
∑
i

c3,i(d(xiyi)− xidyi− yidxi) +
∑
i

`idzi

Taking the map ⊕q∈SSdq → ΩS/R which imposes derivation relations, in ΩS/R we have that

da =
∑
i

c1,idri +
∑
i

`idzi

Since each m(ri) is in the image of R′ → S ′, it only remains to show that the sum
∑

i `idzi,

when taken to ΩS/R, can be written as a linear combination of the desired di�erentials. For any

u ∈ S ′, let
∑

j∈J(u) `jdzj be the collection of terms in
∑

i `idzi for which m(zi) = u.

Since
∑

i `idzi ∈ kerϕ and ⊕w∈S′S ′w is free over S ′, we must have either u = 0 or∑
j∈J(u)m(`j) = 0. In the former case, we have that

∑
j∈J(u) `jdzj is in the desired form. In the

latter case, reindexing the `j , we have `1 = −`2 − `3 − . . .− `n. It follows that in ΩS/R we have

`1dz1 + · · ·+ `ndzn = −`2dz1 − . . .− `ndz1 +
∑
i 6=1

`idzi

=
∑
i 6=1

`id(zi − z1)

which is in the desired form.
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2.1 Two exact sequences

If we have rings A→ B → C, then

A B

C

(4)

yields a map of C-modules η : ΩC/A → ΩC/B. We likewise have a map of B-modules ΩB/A →
ΩC/A, which with the natural multiplication map from a tensor product defines a map of C-

modules C⊗B ΩB/A → ΩC/A. We can see that η is surjective. Applying the handy lemma shows

that these maps assemble into an exact sequence of C-modules

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0 (5)

A further recipe allows us to calculate the e�ect on the module of di�erentials of quotienting

the larger of the defining rings. Any map of rings A → B and ideal I ⊆ B yields an exact

sequence

I/I2 δ−→ B/I ⊗B ΩB/A
π−→ Ω(B/I)/A → 0 (6)

with δ(b + I2) = 1 ⊗ db. Applications of the Leibniz property show that δ is well defined and

B/I -linear. The right three terms come from our previous exact sequence, with C = B/I . To

see that im δ = ker π, let b denote the quotient of an element b ∈ B. Then π(
∑

i fi ⊗ hidgi) =

π(
∑

i 1⊗ fihidgi) =
∑

i fihidgi. By the handy lemma this is zero exactly if we can write this so

all the fihi are zero (assume otherwise) or all the gi are in the image of A → B → B/I . The

dgi which were not already zero must have gi ∈ I for this to be true, whence π vanishes exactly

when
∑

i 1⊗ fihidgi ∈ im δ.

Remark 2.2. We can illuminate the meaning of these sequences a little bit by again considering

the case of manifolds. Given a submersion ϕ : X → Y of manifolds, we can define the relative

tangent bundle TX/Y to be the subbundle given by the kernel of Dϕ - in essence, by the regular

value theorem, each level set of ϕ is a submanifold, and we take the union of the tangent

vectors to these submanifolds. The relative cotangent bundle T ∗X/Y is then the cotangent bundle

of TX/Y . In the case of a sequence of maps X ϕ−→ Y → Z which are all submersions, the

following sequence of vector bundles over Z is exact

ϕ∗(T ∗Y/Z)→ T ∗X/Z → T ∗X/Y → 0 (7)

where ϕ∗ is the pullback functor on bundles.
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On the other hand, if X ↪→ Y is a submanifold, we can define a bundle NX/Y of vectors

normal to X inside of Y : it is the bundle fitting into the short exact sequence of vector bundles

on X given by

0→ TX → (TY )|X → NX/Y → 0 (8)

That is, we restrict the tangent bundle of Y toX, then quotient by those vectors that are tangent

to X, leaving only those which point in directions ‘normal’ to X . Dualizing this sequence yields

a short exact sequence

0→ N∗X/Y → (T ∗Y )|X → T ∗X → 0 (9)

Equation (7) and eq. (9) correspond to eq. (5) and eq. (6), respectively, except that when we

work with less nice cases, we require correction factors like the tensor products and losing a

zero in the second sequence.

Remark 2.2 motivates the naming of our sequences.

De�nition 2.3. Equation (5) is the cotangent sequence and eq. (6) is the conormal sequence.

Example 2.4. In Remark 2.2, when Y = X×X and the map X ∆−→ X×X is the diagonal, eq. (8)

takes on particular significance. Here the sequence is

0→ TX → (TX × TX)|im ∆ → N(X×X)/X → 0 (10)

Since the first map is v 7→ (v, v), we see that N(X×X)/X
∼= TX . Dualizing, N∗(X×X)/X

∼= T ∗X .

2.2 The role of I/I2

Remark 2.2 suggests that when we see an expression of the form I/I2, we ought to draw analogies

with the dual of the bundle of vectors normal to a submanifold. Example 2.4 suggests that for a

ring S we ought to able to compute sections of our analogue of the cotangent bundle in terms

of the diagonal of S.

To begin making this precise, let us fix some notation.

De�nition 2.5. Let R → S be a map of rings. Let m : S ⊗R S → S be multiplication. Let

I = kerm. Let d : S → I/I2 be defined by x 7→ 1⊗ x− x⊗ 1. We call (I/I2,d), or for brevity

just I/I2, the conormal module of R→ S.

Throughout this section, let R, S, I and d be as in the above definition.

Here is a lemma that will be useful in our computations.
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Lemma 2.6. I consists of exactly those elements
∑

i ai ⊗ bi for which
∑

i aibi = 0. Further, I is

generated as an S-module by elements of the form 1⊗ x− x⊗ 1.

Proof. The first statement is the definition. Now suppose we have
∑

i ai ⊗ bi ∈ I . Then
∑

i ai ⊗
bi =

∑
i ai ⊗ bi −

∑
i aibi ⊗ 1 =

∑
ai(1⊗ bi − bi ⊗ 1).

There is a suggestive resemblance to an inner product in the above, but at least in these

notes, nothing will come of it.

Theorem 2.7. (I/I2, d) is the module of di�erentials of R→ S.

Proof. We first note that I/I2 has the structure of an S-module, induced by the S-module struc-

ture on S ⊗R S. This is not multiplication into either factor, or as an S-module we would have

S⊗R S ∼= S - it is multiplication into the first factor. Also note that by definition,
∑

i ai⊗ bi ∈ I
if and only if

∑
i aibi = 0.

We first check that d is an R-derivation. For any x, y ∈ S, we have d(xy) = 1⊗ xy − xy ⊗ 1

and d(x)y + xd(y) = y(1 ⊗ x − x ⊗ 1) + x(1 ⊗ y − y ⊗ 1) = y ⊗ x + x ⊗ y − 2xy ⊗ 1. Thus

d(xy)−d(x)y−yd(x) = 1⊗xy−y⊗x−x⊗y+xy⊗1. We can write this as (1⊗x−x⊗1)(1⊗y−y⊗1),

so d(xy) = d(x)y + yd(x) in I/I2.

Let (M,ϕ) be an object of OS/R. Let d0 : S → I be the map x 7→ 1 ⊗ x − x ⊗ 1, and

π : I → I/I2 be the quotient map. Then d = πd0. Now let ϕ∗ : I → M be defined by

x⊗ y 7→ xϕ(y). This is the composition of id×ϕ : S ⊗R S → S ⊗RM and multiplication, so is

well defined. Notice that ϕ̄∗d0(x) = ϕ̄∗(1⊗ x)− xϕ̄∗(1⊗ 1) = ϕ(x)− xϕ(1) = ϕ(x).

Now suppose
∑

i ai ⊗ bi,
∑

j cj ⊗ ej ∈ I . Then

ϕ∗

((∑
i

ai ⊗ bi

)(∑
j

cj ⊗ ej

))
= ϕ∗

(∑
ij

aicj ⊗ biej

)
=
∑
ij

aicjϕ(biej)

=
∑
ij

(aicjbiϕ(ej) + aicjejϕ(bi))

=
∑
j

cj

(∑
i

aibi

)
ϕ(ej) +

∑
i

ai

(∑
j

cjej

)
ϕ(bi)

=
∑
j

cj · 0 ·ϕ(ej) +
∑
i

ai · 0 ·ϕ(bi)

= 0

Since ϕ∗ vanishes on I2, we see that ϕ∗ descends to an S-linear map ϕ̄ : I/I2 →M .
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Suppose we have an S-linear map τ : I/I2 → M with ϕ = τd. From lemma 2.6, we know

that τ is completely described by the values τ(1⊗x−x⊗1) = τd(x) = ϕ(x) = ϕ̄d(x). It follows

that τ = ϕ̄, demonstrating uniqueness. Thus (I/I2,d) is initial in OS/R, as desired.

The square of a kernel of a map from a tensor product is not necessarily all that easy to

compute. For example, it is easier to check that ΩA[x1,...,xn]/A is the free A[x1, . . . , xn] module

generated by di�erentials dxi using the explicit construction, or the universal property, than by

the above. The reason we bother with this construction is that it plays nicely with the sheaf

structure on a scheme.

3 Extending the Construction to Schemes

Given all the work we’ve put in to defining the module of di�erentials of one ring over another,

there can only really be one definition locally: given a morphism SpecS → SpecR, we must

have ΩSpecS/SpecR = Ω̃S/R. Given a possibly non-a�ne scheme X, we want a sheaf that yields

the above when restricted to open a�nes, and does so in a ‘compatible’ way. We could put the

work into understanding what this means, or proceed with the following definition.

For us a locally closed embedding will be the composition of a closed embedding followed

by an open embedding.

Lemma 3.1. Let ϕ : X → Y be a morphism of schemes. Let ∆ : X → X ×Y X be the diagonal

morphism. Then ∆ is a locally closed embedding.

Proof. Let V ⊆ Y andW ⊆ X be open a�ne subsets, withϕ(W ) ⊆ Y . ThenW×YW ⊆ X×YX
is open a�ne. We have that ∆−1(W ×Y W ) = V . We know the diagonal morphism is a closed

embedding for a�ne schemes, so take the union of all such W ×Y W .

De�nition 3.2. Let ϕ : X → Y be a morphism of schemes. Let ∆ : X → X ×Y X be the

diagonal morphism. Let T be an open subset of X ×Y X into which ∆ is a closed embedding.

Let I be the sheaf of ideals for ∆ in T . Then let ΩX/Y := ∆∗(I /I 2).

Notice that two choices T, T ′ of the open subset in the definition yield the same sheaf, since

∆∗(I /I 2)(U) is defined by taking a colimit over open sets containing ∆(U), which includes

T ∩ T ′.
As a sanity check, we now show that when we reduce to the case of one a�ne scheme

mapping into another, we get the right module back. If U = SpecB and V ⊆ Y are open a�ne,

with ϕ(U) ⊆ V , then V ×U V ↪→ X ×Y X is the open a�ne Spec(B ⊗A B). By definition,
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I (V ×U V ) is the kernel of B ⊗A B → B, so I /I 2(V ×U V ) is the conormal module I/I2 of

A→ B, which is Ω̃B/A. We know that the pullback of a module in the image of the (̃−) functor

is given by the tensor product. That is, restricting ∆ to ∆ : V → V ×U V , we have

∆∗(I /I 2)(V ) = (ΩB/A ⊗B⊗AB B)∼(V ) = ΩB/A ⊗B⊗AB B
∼= ΩB/A (11)

as desired.

This construction yields analogues of eq. (5) and eq. (6), which are as follows. Given a

morphism of schemes X
f−→ Y

g−→ Z, the following sequence is exact

f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0 (12)

Given a morphisms of schemes Z ↪→ X → Y , where the first morphism is a closed embedding,

we also obtain a canonical exact sequence of sheaves

IZ/I
2
Z → ΩX/Y ⊗OZ → ΩZ/Y → 0 (13)

where IZ is the ideal sheaf of Z. The exactness of both these sequences reduces to the algebra

we did earlier. We give these the same names we did earlier.

De�nition 3.3. Equation (12) is the cotangent sequence of sheaves and eq. (13) is the conormal

sequence of sheaves.

4 Smoothness

We will close with a brief discussion of smoothness, following Liu’s Algebraic Geometry and Arith-

metic Curves. Liu’s definition of a variety is broad.

De�nition 4.1. A variety X
ϕ−→ k is a scheme over a field k which is covered by finitely many

open a�ne subsets Ui, each of which is of finite type over k via ϕ|Ui
.

We now define smoothness in two steps, beginning with the algebraically closed case, in

which smoothness coincides with the familiar notion of regularity.

De�nition 4.2. A point x in a scheme X is a regular point of X if OX,x is a regular local ring.

De�nition 4.3. Let X be a variety over an algebraically closed field. We define the smooth

points of X to be the regular points.

Notice that this means we can check for smoothness at closed points using the Jacobian.

The second step is to pass to general varieties.
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De�nition 4.4. If X → k is a variety, we say x ∈ X is a smooth point if every x̄ ∈ Xk̄ which lies

above x is smooth according to definition 4.3.

The restate this, given the fiber product

X ×k Spec k̄ Spec k̄

X Spec k

π (14)

we require that the points of π−1(x) each individually be smooth.

The idea here is that a scheme over a general field is a less geometric object than one over

an algebraically closed field. For example, the “variety” in A2
R defined by x2 + y2 = −1 consists

entirely ofC points, which have no naive geometric interpretation. Upon passing to the algebraic

closure, the vanishing locus of the same equation becomes a variety in the most classical sense,

with explicit geometric features. This is reflected in the use of terms such as “geometrically

irreducible.”

We now define smoothness of general morphisms.

De�nition 4.5. Let X and S be schemes, with S locally Noetherian, and let X ϕ−→ S be a

compact morphism of finite type. We say that ϕ is smooth at x if Xϕ(x) is smooth according to

definition 4.4.

The reader should recall thatXϕ(x) isϕ−1(ϕ(x)) with a canonical scheme structure. Taking S

to be a parameterization of a family of subschemes ofX, this says that the family S parameterizes

consists entirely of smooth schemes.

We’ll wind up by mentioning with a couple more notable results, both of which you can find

in Liu.

It isn’t immediately clear what the connection is between smoothness and di�erential forms,

but the following definition and theorem begin linking them together.

De�nition 4.6. Let X be a scheme and x ∈ X . Then dimxX is the least dimension among all

neighborhoods of X .

Theorem 4.7. Let X be a variety over a �eld k, and let x ∈ X . Then the following properties are

equivalent:

1. X is smooth in a neighborhood of x.

2. (ΩX/k)x is free of rank dimxX .
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Di�erential forms at a stalk can be thought of as infinitesimal shadows of coordinate func-

tions, so one ought to interpret this as suggesting there are the correct number of independent

coordinate functions near x.

The second result, which continues developing this intuition, is revealing of the nature of

smoothness over non-field bases. It uses the notion of étale morphisms, which we won’t define

but which are morally local isomorphisms (here ‘local’ means with respect to the domain and

on a very, very small neighborhood, potentially too small for the Zariski topology to describe.

Think of a covering space).

Theorem 4.8. Let X
f−→ S be a morphism to a locally Noetherian scheme, smooth at a point x ∈ X .

Then there exists a number n and a neighborhood U of x so that we have the following factorization

U An
S

S

f |U

ϕ

(15)

Further, ϕ is étale at x.

We should interpret this as follows: on a tiny neighborhood about x, potentially smaller than

U , we can think of f as given by projection of a trivial bundle down to S.

We will conclude by describing how ϕ comes about, connecting this result to the prior

theorem. By theorem 4.7, choose a basis {df1, . . . ,dfn} for (ΩX/k)x over OX,x. Choose U about

x to be open a�ne, say SpecR, and small enough that the dfi all lift to global sections of OU .
Then R is an A-algebra, and xi 7→ fi defines a map of rings A[x1, . . . , xn]→ R, thus a morphism

ϕ : U → An
A through which f factors.
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