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This is essentially an exposition of a few exercises in Hartshorne.

There are two main statements we will prove. Recall that a constructible subset of a topological

space is a finite union of locally closed sets. That is, S is constructible if S is of the form

(U1 ∩K1) ∪ (U2 ∩K2) ∪ · · · ∪ (Un ∩Kn), where all the Ui are open and the Ki are closed.

Theorem 0.1. Let ϕ : X → Y be a morphism of �nite type between Noetherian schemes. Then the

image of any constructible subset is constructible.

It can be shown that equivalently, constructible sets are exactly the boolean algebra gener-

ated by open sets, finite unions, and complements. This gives them significance in applications

of model theory to algebraic geometry (in a�ne space over an algebraically closed field, they

are exactly the quantifier free definable sets). They also permit a fancy generalization in con-

structible sheaves, which are significant in the theory of étale cohomology.

The above statement is su�cient for maps between varieties, but the theorem can be proven

more generally than will be seen here. The broader statement is as follows:

Theorem 0.2. Let ϕ : X → Y be a �nitely presented morphism of schemes. Then ϕ takes locally

constructible1 subsets to locally constructible subsets.

Having proved Chevallay’s theorem, we will provide a straightforward application which may

illuminate flatness a little bit.

Theorem 0.3. Let ϕ : X → Y be a �at morphism of �nite type between Noetherian schemes. Then ϕ

is a open map.

1. Noetherian Induction

Our proof will be by Noetherian induction, which we will briefly review.

Proposition 1.1. Let P be a poset satisfying the ascending chain condition. Let P be a property of

elements of P satis�ed by at least one element. Then there is some element maximal among those satisfying

P .

1This requires slightly changing the definition of constructability, in a way we won’t discuss. The term “locally

constructible” means “constructible on each set of an open cover”
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Proof. Let P ′ be the subposet containing all elements satisfying P . Since P satisfies the ascend-

ing chain condition, so does P ′, so by Zorn’s lemma the desired element exists. �

Proposition 1.2. Let P be a poset satisfying the ascending chain condition, and let P be a property of

elements of P such that for every x ∈ P , if all y ∈ P with y > x satisfy P , then x satis�es P . Then

every element of P satis�es P .

Proof. Suppose otherwise. By the previous proposition there exists some element maximal

among those not satisfying P , yielding a contradiction. �

Corollary 1.3. Let X be a Noetherian topological space and P be a property of closed sets such that

for every closed subset K , if all closed K ′ ⊂ K satisfy P , then K satis�es P . Then P holds for every

closed subset of X , and in particular holds for X .

2. Generic Freeness

Remember that we ought to think of an OX -module as being something like the sheaf of

sections of a vector bundle, except that the fibers may be attached together in strange ways or

suddenly change their dimension. Quasicoherent sheaves are those which arise algebraically,

while coherent sheaves are, in addition, conceptually finite dimensional. It is a significant fact

that for coherent sheaves on integral schemes, not only will the ‘weird fibers’ only occur along

a relatively small set, so that we can bundle-ify the sheaf by cutting out a hypersurface, but

that the relations which prevent the resulting bundle from being trivial can also be removed by

cutting out a hypersurface (for a real manifold example of this last fact, consider how removing

a single point from S1 allows us to untwist the mobius band over it, yielding a rectangle). This

phenomenon is called generic freeness; we present a special case of it.

Recall that κ(x) denotes the residue field of a point x.

De�nition 2.1. Let X be a scheme and F be an OX -module. Let x ∈ X . Then the �ber of F
over x, which we denote by κF(x), is the κ(x) vector space Fx ⊗Ox,x κ(x).

Notice that if F were a geometrically realized vector bundle or something similar over X,

algebraically κF(x) is what we would get by taking the fiber over x.

Theorem 2.2. Let M be a coherent sheaf on a locally Noetherian scheme x. Let x ∈ X and let

e1, . . . , en be generators of κF(x). Then we can lift the ei to an open neighborhood U of x such that the

ei generate the stalks of every point in U .

Proof. By Nakayama’s lemma, the ei may be lifted to a generating set for Fx, which we then lift

to a set of sections also denoted by ei on an open a�ne neighborhood SpecA of x. Now on
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SpecA we have that F ∼= M̃ for some finitely generated A-moduleM , so we can pick generators

q1, . . . , qm of F(Spec(A)). Note that localizing brings generating sets of modules to generating

sets (we can see this by taking a presentation, then using right exactness of the tensor product

and the fact that localizing free modules gives free modules). Thus it is su�cient to write the

qi as linear combinations of the ei on some neighborhood U of x: we will have that the qi are in

(e1, . . . , en), so (e1, . . . , en) = F(U), so the ei generate the stalks of all points in U .

In Fx, we can write qi =
∑

j cijej for some cij . Shrink our open set until we have lifts of all

these cij , then shrink again until qi −
∑

j cijej = 0 for all i. This is our U . �

Corollary 2.3. (Upper semicontinuity of dimension) For all y ∈ U , we have dimκ(y)Fy ⊗OX,y
κ(y) ≤

dimκ(x)Fx ⊗OX,x
κ(x).

To see an example of the corollary in action, consider the tangent bundle of a curve with a

self intersection: if the curve is smooth, it’s also smooth at nearby points, and the fibers of the

bundle are of dimension one. But at the point of self intersection, the dimension of the tangent

bundle jumps.

Now here is our form of generic freeness.

Theorem 2.4. Let A be an integral domain and let M be a �nitely generated A-module. There exists

some nonzero f ∈ A such that Mf is free of �nite rank.

Proof. Let F = M̃ . Let η ∈ SpecA be the generic point. By the previous theorem we may lift

a basis for e1, . . . , en of κF(η) to a generating set on some neighborhood U of η. Now suppose

there exists a relation c1e1 + · · · + cnen. Passing to FracA would kill all the ci, since the ei are

linearly independent in Ox,η, but since A is an integral domain this shows the ci are all zero.

Passing to some basic open D(f) shows that Mf is free. �

3. Chevalley’s Theorem

We begin with some algebra.

Lemma 3.1. Let B be an integral domain and A a subring A ↪→ B such that B is �nite over A. Let

b ∈ B be nonzero. There exists some a ∈ Awith the following property. Ifϕ∗ : A→ k is a homomorphism

to an algebraically closed �eld with ϕ(a) 6= 0, then ϕ∗ extends to B in such a way that ϕ∗(b) = 0.

Equivalently, every morphism ϕ : Spec k → SpecA\V (a) lifts to some ϕ : Spec k → SpecB\V (b).

Proof. By generic freeness, we may choose some nonzero f ∈ A such that B[f−1] is free over

A[f−1]. Choosing a basis, multiplying by b is anA[f−1]-linear transformation ofB[f−1], encoded

by some matrix with a determinant r/fn ∈ A[f−1], where r ∈ A. Since b 6= 0 and B[f−1] is an

integral domain, we must have that r 6= 0. Now let a = rf .
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Supposing we have some ϕ∗ as in the statement, let x be the point picked out by ϕ. Since

x 6∈ V (r), it cannot be that b restricts to zero on the fiber over x, whence there is some point x′

in the fiber which is not in V (b). By Zariski’s lemma κ(x′) is a finite extension of κ(x), so ϕ∗

extends to an embedding of κ(x′) into k, so ϕ lifts to x′, as desired. �

Proposition 3.2. The same result holds in the situation of the above lemma when B is of �nite type

over A.

Proof. We proceed by induction on the number of generators n of B. If n = 0 there is nothing

to prove.

If n = 1, say B = A[t], there are two cases. If t satisfies no relations over A, then writing

b =
∑

i cit
i, we can extend any ϕ∗ by sending t to any non-root of

∑
iϕ
∗(ci)x

i. If t does satisfy

a relation, say c0tm + c1t
m−1 + · · · + cm = 0, then B[c−10 ] is a finite module over A[c−10 ], so we

can apply the lemma to produce an a′ so that we can extend any ϕ∗ which does not send c0 or

a′ to zero. Thus the desired a is c0a′.

Now suppose the result holds for all A[t1, . . . , tn−1]. Since B = A[t1, . . . , tn] is of finite type

over A[t1, . . . , tn−1], we can apply the n = 1 case to find some a′ ∈ A[t1, . . . , tn−1], then apply

the induction hypothesis with a′ to find an a ∈ A. Now if ϕ∗(a) 6= 0, then we can extend ϕ∗ to

A[t1, . . . , tn−1] so that ϕ∗(a′) 6= 0, and we can therefore extend to B so that ϕ∗(b) 6= 0. �

Corollary 3.3. Let ϕ : X → Y be a dominant morphism of �nite type of integral schemes. Then imϕ

contains a nonempty open set.

Proof. Let SpecA be an a�ne open subset of Y with preimage SpecB, where B is finitely gen-

erated over A. Apply the previous result with any b to find that all of D(a) is in the image of

ϕ. �

We can now prove Chevalley’s theorem.

Proof. Wemay assume thatX and Y are reduced, since the question is topological and nilpotents

do not a�ect the topology. Let S ⊆ X be constructible, say S = (U1 ∩K1) ∪ (U2 ∩K2) ∪ · · · ∪
(Un ∩Kn), where the Ui are open and, without loss of generality, the Ki are irreducible. Then

Ui ∩ Ki is an open subscheme of Ki with the reduced induced structure, and if the image of

each Ui ∩Ki is constructible so is the image of S, so we may as well assume X = Ui ∩Ki. Note

that in this case X is integral.

Now let P be the property on closed sets that all morphisms from such an X to the closed

set have a constructible image. We will apply Noetherian induction. Pick a closed set K so

that all proper closed subsets of K have property P . If K is empty, there is nothing to show.
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Suppose otherwise, and that X maps into K. If K is reducible, write K = K1 ∪ · · · ∪Kn. Then

imϕ = imϕ|ϕ−1(K1) ∪ · · · ∪ imϕ|ϕ−1(Kn), so P holds.

Now suppose that K is irreducible. If the image of ϕ in K is not dense, then taking the

closure T of the image, since T is a proper subset of K, by hypothesis ϕ has a constructible

image. If the image of ϕ is dense, then applying the previous corollary, we find imϕ contains

an open set U . Now imϕ = U ∪ (imϕ∩ (K\U)). By hypothesis imϕ∩ (K\U) is constructible,
and U is constructible by virtue of being open, so imϕ is constructible. �

This result immediately lets us strengthen the corollary we used to prove it.

Proposition 3.4. Let ϕ : X → Y be a dominant morphism of �nite type between Noetherian schemes.

Then imϕ contains a dense open set.

Proof. It is enough to prove this when Y is irreducible. Let imϕ = ∪ni=1(Ui ∩Ki), with the Ui
open, the Ki closed, and none of the intersections empty. If none of the Ki = Y then since

imϕ ⊆ ∪ni=1Ki we contradict the dominance of ϕ. �

4. Openness of Flat Maps

We will provide an application by proving that flat morphisms of finite type between Noether-

ian schemes are open (i.e. they take open sets to open sets).

Lemma 4.1. Let ϕ : X → Y be a �at morphism of schemes, with Y integral. Then ϕ is dominant.

Proof. Without loss of generality, we may assume that Y = SpecA and X = SpecB. Pick any

nonzero f ∈ A. Then 0 → A
f−→ A pulls back to 0 → B

ϕ∗(f)−−−→ B, so ϕ∗ must be injective,

whence ϕ is dominant. �

De�nition 4.2. Let X be a Noetherian scheme. If p, F are points in X and p ∈ {F}, then we

say that p is a specialization of F and that F is a generization of p.

The reason for this naming is that we should think of restricting to {F} as imposing some

relation on the inputs of functions, and we should think of restricting to {p} as imposing a

more restrictive relation. We can also think of this as partial function evaluation. For example,

in a�ne two space, passing to k[x, y]/(x − y2) represents partially evaluating functions, while

passing to k[x, y]/(x− 1, y − 1) represents fully evaluating functions.

Lemma 4.3. Let T be a subset of a Noetherian schemeX . Then T is closed if and only if it is constructible

and closed under specialization, and open if and only if it is constructible and closed under generization.
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Proof. If T is open or closed, certainly T is constructible. Pick any p ∈ U . If T is open, then if

p ∈ {F}, and U does not include F , then (X\U)∩{F} is a strictly smaller closed set containing

F , which is a contradiction. If T is closed, then T contains {p}, hence any specialization of p.

Conversely, let T = ∪ni=1(Ui∩Ki), where the Ui are open and the Ki are closed. If T is closed

under specialization, then by the same reasoning as above, each nonempty Ui ∩Ki contains all

the generic points of Ki, hence by closure under specialization contains Ki, so that T = ∪ni=1Ki

is closed. If T is closed under generization, then X\T is constructible and necessarily closed

under specialization, so as just shown, is closed. Thus T is open. �

Theorem 4.4. Let ϕ : X → Y be a �at morphism of �nite type between Noetherian schemes. Then ϕ

is an open map.

Proof. It is enough to show that imϕ is open: the same reasoning will work for any open sub-

scheme U of X, since the composition U ↪→ X
ϕ−→ Y is flat. We know from Chevalley’s theorem

imϕ is constructible. By the previous lemma it is su�cient to prove that imϕ is closed under

generization. Let x ∈ imϕ be in K = {x′}, where we give K its reduced induced structure.

Flatness is preserved under base change and so ϕK : XK → K is flat. Since K is integral it

follows from Lemma 4.1 that ϕK is dominant. By Proposition 3.4 this means that the image

contains an open set, and therefore contains x′. �


